Exact quadratic convex reformulations of mixed-integer quadratically constrained problems
نویسندگان
چکیده
منابع مشابه
Reformulating Mixed-Integer Quadratically Constrained Quadratic Programs
It is well known that semidefinite programming (SDP) can be used to derive useful relaxations for a variety of optimisation problems. Moreover, in the particular case of mixed-integer quadratic programs, SDP has been used to reformulate problems, rather than merely relax them. The purpose of reformulation is to strengthen the continuous relaxation of the problem, while leaving the optimal solut...
متن کاملDisjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...
متن کاملConstraint Programming for Strictly Convex Integer Quadratically-Constrained Problems
Inspired by the geometric reasoning exploited in discrete ellipsoid-based search (DEBS) from the communications literature, we develop a constraint programming (CP) approach to solve problems with strictly convex quadratic constraints. Such constraints appear in numerous applications such as modelling the ground-to-satellite distance in global positioning systems and evaluating the efficiency o...
متن کاملConvex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملConvex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2015
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-015-0921-2